Pain Management: Rationale for the BioPsychoSocial Perspective

MI-CCSI

David A. Williams, Ph.D.

Professor of Anesthesiology, Medicine, Psychiatry and Psychology
Associate Director, Chronic Pain and Fatigue Research Center
Co-Director, Research Development, Michigan Institute for Clinical Health Research (MICHR)
Director, Network-based Research Unit, MICHR
University of Michigan Medical Center
Ann Arbor, Michigan

Disclosures

- Consultant to Community Health Focus Inc.
- Past-President of the American Pain Society
- Funded for research by NIH

There will be no use of off-label medications in this presentation.

Chronic Pain Numbers

100 Million People
- US

150 Million
- 37 Countries

Eccleston, C., Wells, C. (2017). European Pain Management. Oxford University Press

More people have Chronic Pain than Diabetes, Heart Disease, and Cancer Combined

Chronic Pain

100 Million

Diabetes

29.1 Million

Heart Disease

27.6 Million

፟፟፟፟፟ጟ፞ጜ፟ጜ፟ጜ፞ጜ፟ጜ፞ጜ፞ጜጜጜጜጜጜጜጜጜ ፟ጜ፟ጜ፞ጜ፟ጜ፟ጜ፞ጜ፞ጜ፞

Cancer

13.7 Million

Most Pain Care Visits occur within Primary Care

Peterson K, et al.. VA ESP Project #09-199; 2017.

Primary Care Physicians Receive Little Training in Pain Management

- 80% of American Medical Schools have no formal pain education
- Those that do, report 5 or fewer hours
 - Emphasis of education is often cellular and subcellular rather than interpersonal or social in nature
- Only 34% of physicians reported feeling comfortable treating chronic pain
 - Only 1% found it a satisfying practice

Survey of Primary Care Physicians treating Chronic Pain

- 34% no longer accepted new patients with chronic pain
- 79% currently prescribe opioids for chronic pain
- 72% of physicians lacked alternative treatments to opioids
- 87% of patients were unwilling to try non-pharmacological treatment

Pain Medicine Versus Pain Management: Ethical Dilemmas Created by Contemporary Medicine and Business

John D. Loeser, MD*† and Alex Cahana, MD, PhD*†

Biomedical Model
Interventional
Pain Medicine

Biopsychosocial model
Interdisciplinary
Pain Management

- Procedure Driven
- Focus on curing/fixing

Patient is passive recipient

- Focus on multidisciplinary teams
- Focus on pain management

Patient is active participant

How good is our black bag for treating chronic pain?

Treatment	Impact on Chronic Pain
Long term opioids	32% reduction
Pain drugs generally (across classes)	30% - 40% get 40% - 50% relief
Spinal fusion	75% still have pain
Repair herniated disk	70% still have pain
Repeat Surgery	66% still have pain
Spinal cord stimulators	61% still in pain after 4 yrs. average pain relief 18% across studies

Pain Medicine, 20(7), 2019, 1281–1293 doi: 10.1093/pm/pny154

Advance Access Publication Date: 10 September 2018

Review Article

GENERAL & SELECTED POPULATIONS SECTION

Are Invasive Procedures Effective for Chronic Pain? A Systematic Review

Wayne B. Jonas, MD,* Cindy Crawford, Luana Colloca, MD, PhD, Levente Kriston, PhD, Klaus Linde, MD, PhD, Bruce Moseley, MD, and Karin Meissner +*

*Integrative Health Programs, H&S Ventures, Alexandria, Virginia; ¹TLI Foundation, McLean, Virginia; ¹University of Maryland School of Nursing and Medicine, Baltimore, Maryland, USA; ⁸University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¹Institute of General Practice, Klinikum rechts der Isar, Technical University Munich, Munich, Germany, ¹Joseph Barnhart Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA; ¹Division Health Promotion, University of Applied Sciences Coburg, Coburg, Germany; **Institute of Medical Psychology, LMU Munich, Munich, Germany

Correspondence to: Wayne B. Jonas, MD, Executive Director, Samueli Integrative Health Programs, H&S Ventures, 1800 Diagonal Road, Suite 617, Alexandria, VA 22314, Tel: (703) 647-7435; Fax: (703) 647-6009; Email: wayne@hsventures.org

Funding sources: Funding was provided through the support of Samueli Institute. Karin Meissner received support from the Theophrastus Foundation and the Schweizer-Arau Foundation, Germany.

Conflicts of interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare no financial relationships with any organizations that might have an interest in the submitted work in the previous three years and no other relationships or activities that could appear to have influenced the submitted work. The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported, that no important aspects of the study have been omitted, and that any discrepancies from the study as planned have been explained.

Abstract

Objective. To assess the evidence for the safety and efficacy of invasive procedures for reducing chronic pain and improving function and health-related quality of life compared with sham (placebo) procedures. Design. Systematic review with meta-analysis. Methods, Studies were identified by searching multiple electronic databases, examining reference lists, and communicating with experts. Randomized controlled trials comparing invasive procedures with identical but otherwise sham procedures for chronic pain conditions were selected. Three authors independently extracted and described study characteristics and assessed Cochrane risk of bias. Two subsets of data on back and knee pain, respectively, were pooled using random-effects meta-analysis. Overall quality of the literature was assessed through Grading of Recommendations, Assessment, Development, and Evaluation, Results, Twenty-five trials (2,000 participants) were included in the review assessing the effect of invasive procedures over sham. Conditions included low back (N = 7 trials), arthritis (4), angina (4), abdominal pain (3), endometriosis (3), biliary colic (2), and migraine (2). Thirteen trials (52%) reported an adequate concealment of allocation. Fourteen studies (56%) reported on adverse events. Of these, the risk of any adverse event was significantly higher for invasive procedures (12%) than sham procedures (4%; risk difference = 0.05, 95% confidence interval [CI] = 0.01 to 0.09, P = 0.01, $\hat{f} =$ 65%). In the two meta-analysis subsets, the standardized mean difference for reduction of low back pain in seven studies (N = 445) was 0.18 (95% CI = -0.14 to 0.51, P = 0.26, $l^2 = 62\%$), and for knee pain in three studies (N = 496) it was 0.04 (95% CI = -0.11 to 0.19, P = 0.63, P = 36%). The relative contribution of within-group improvement in sham. treatments accounted for 87% of the effect compared with active treatment across all conditions. Conclusions. There is little evidence for the specific efficacy beyond sham for invasive procedures in chronic pain. A moderate amount of evidence does not support the use of invasive procedures as compared with sham procedures for patients with chronic back or knee pain. Given their high cost and safety concerns, more rigorous studies are required before invasive procedures are routinely used for patients with chronic pain.

We Need to Approach Chronic Pain Differently

How is Pain Classified?

Time

Body Location

Suspected Etiology

Acute Vs Chronic

Head, Neck, Back, Pelvis

Cancer, Rheumatic, etc.

Newest Classification: Pain Mechanisms

Nociceptive Peripheral damage or inflammation

Neuropathic

Central

Nociceptive Pain

(mechanical, thermal, chemical)

Neuropathic Pain

Peripheral

Central

Post-Stroke

Central (Nociplastic) Chronic Overlapping Pain Conditions

COPCs	US Prevalence
Irritable Bowel Syndrome	44 Million
Temporomandibular Disorder	35 Million
Chronic Low Back Pain	20 Million
Interstitial Cystitis / Bladder Pain Syndrome	8 Million
Migraine Headache	7 Million
Tension Headache	7 Million
Endometriosis	6 Million
Vulvodynia	6 Million
Fibromyalgia	6 Million
Myalgic Encephalopathy / CFS	4 Million

¹Veasley, C. et al (2015). White paper from the *Chronic Pain Research Alliance*.

Mechanisms of Pain

Nociceptive and

Inflammatory

Inflammation

Noxious

Peripheral or Neuropathic Central damage

Centrally Driven Pain

Mechanisms of Pain

Nociceptive and

Noxious Peripheral Stimuli

Inflammatory

Inflammation

Neuropathic

Peripheral or Central damage

Centrally Driven Pain

Neurobiological perspective

Brain regions associated with pain processing involve both sensory and affective/cognitive regions

- Sensory / discriminative dimension
 - Somatosensory cortices (S1, S2)
 - Dorsal posterior insula
- Affective / Cognitive dimensions
 - Anterior insula
 - Prefrontal cortex
 - Anterior cingulate cortex
 - Thalamus
 - Amygdala
 - Hippocampus

Neurobiological perspective

Brain regions associated with pain processing involve both sensory and affective/cognitive regions

- Sensory discriminative dimension
 - Some cortices (S1, S2)
 - Do poste insula
- Affective / Cognitive dimensions
 - Anterior insula
 - Prefrontal cortex
 - Anterior cingulate cortex
 - Thalamus
 - Amygdala
 - Hippocampus

Neurobiological perspective

Brain regions associated with pain processing involve both sensory and affective/cognitive regions

- Sensory discriminative dimension
 - Some Cortices (S1, S2)
 - Do poste insula
- Affective / Cognitive dimensions
 - Anterior insula
 - Prefrontal cortex
 - Anterior cingulate cortex
 - Thalamus
 - Amygdala
 - Hippocampus

I still feel pain

Chronic Pain has Three Components: The BioMedical Model Focuses on 1 of Them

Thinking Differently about Pain

- Damaged tissue and pain are not the same thing
- Sometimes they occur together, so they seem to be the causal
- Nociception provides bodily information that may or may not be interpreted as pain

Nociception

PAIN

Thinking Differently about Chronic Pain

- Pain is a Perceptual Experience formed in the brain
 - Other perceptual experiences with flexible biological associations include the following:
 - hunger, itch, tickle, urinary urgency, orgasm

Thinking Differently about Chronic Pain

■ Treating a perception requires different techniques than fixing damaged tissues

CNS Neurotransmitters Influencing Pain

Facilitation

Gabapentinoids, ketamine

Glutamate and EAA

Substance P

Nerve growth factor

Serotonin (5HT_{2a, 3a})

Anti-migraine drugs (– triptans), cyclobenzaprine

Descending antinociceptive pathways

Norepinephrineserotonin (5HT_{1a.b}), dopamine

tramadol

Opioids

Low dose naltrexone

Cannabinoids

GABA

Gammahydroxybutyrate, moderate alcohol consumption No knowledge of endocannabinoid activity but this class of drugs is effective

- 1. Schmidt-Wilcke T, Clauw DJ. Nat Rev Rheumatol. Jul 19 2011.
- 2. Clauw DJ. JAMA. 2014.

Norepinephrine

Concentration
Circadian rhythms
Attention
Stress
Energy

Norepinephrine |

Concentration
Circadian rhythms
Attention
Stress
Energy

Serotonin

Well-being
Sleep
Affect /Mood
Appetite

Norepinephrine |

Concentration
Circadian rhythms
Attention

Stress

Energy

Serotonin

Well-being

Sleep

Affect /Mood

Appetite

Dopamine

Attention

Pleasure

Reward

Norepinephrine |

Concentration
Circadian rhythms

Attention

Stress

Energy

Serotonin

Well-being

Sleep

Affect /Mood

Appetite

Dopamine

Cognitive

Function

Attention

Pleasure

Reward

Glutamate

Major Exciter of CNS, Synaptogenesis and neurogenesis

<u>Norepinephrine</u>

Concentration

Circadian rhythms

Attention

Stress

Energy

Serotonin

Well-being

Sleep

Affect /Mood

Appetite

Dopamine

Cognitive

Function

Attention

Pleasure

Reward

Glutamate

Major Exciter of CNS, Synaptogenesis and neurogenesis

Norepinephrine |

Concentration

Circadian rhythms

Attention

Stress

Energy

Serotonin

Well-being

Sleep

Affect /Mood

Appetite

Dopamine

Cognitive

Function

Attention

Pleasure

Reward

GABA

Major Inhibitor of CNS, Sleep/wake cycle

Shared Neurotransmitters Explain

■ The complexity of chronic pain presentation

Shared Neurotransmitters Explain

■ The complexity of chronic pain presentation

Shared Neurotransmitters Explain

■ The complexity of chronic pain presentation

■ SPACE represents new targets for treating pain perception

So what's a doctor to do?

Recommendations in Multiple Federal Documents

Self-Management, Evidence-Based, Patient-Centric, Multi-Modal Pain Care

A Comprehensive Population Health-Level Strategy for Pain

Healthy People.gov

VA's Stepped Care Model of Pain Management

Mixing in Pain Perception

How to ERASE S.P.A.C.E.

Emotions

Reflections

Actions

Sleep

Environment

Sleep, Pain, Affect, Cognitive changes, Energy deficits

ERASE

Emotions

Altering pain perception through Emotions

Psychiatric Co-Morbidities

Psychiatric Co-Morbidity in Chronic Pain

	<u>Depression</u>	Anxiety
General Population:	6.6%	18.1%

Chronic Pain:

30-54%

Personality Disorders in Chronic Pain Patients

Personality Disorders

gen. pop: 5%-15%

chronic pain: 51-%-58%

Cluster A: Odd/Eccentric

- *Paranoid
- *Schizoid
- Schizotypal

44%

Cluster B Emotional/Erratic

- Antisocial
- *Histrionic
- Narcissistic
- Borderline

31%

Cluster C

Anxious/Fearful

- Avoidant
- *Dependent
- OCPD

25%

Personality Disorders

Predictive of transition from acute to chronic status Sub clinical P.D. impacts pain and treatment compliance

Patients do not need to be mentally ill to have chronic pain

Approaches to Resolve Negative Affect Influencing Chronic Pain

Emotional Awareness and Expression Therapy (EAET)

Pleasant Activity Scheduling

Traditional Psychotherapy

Reflections

Using Cognition to alter pain perceptions

Reframing

The Relaxation Response

Visual Imagery

Meditation

Biofeedback

Actions

Using <u>Behavior</u> to alter pain perceptions and provide a foundation of wellness

Exercise

- Multiple reviews and metaanalyses, and professional society guidelines recommend exercise and physical activity for the treatment of chronic pain and fatigue
- Increase Fitness
- Increase Function

Lifestyle Physical Activity

Pacing for Energy Efficiency

Problem Solving / Goal Setting

ERASE

Sleep

Altering Pain via Sleep

Behavioral and Sleep Hygiene Skills

Timing

Regular bed time/wake time

Sleep Behavior

Get in bed only when sleepy Use bed for sleep Get up after 15' if no sleep

Thermal Tips

Decline in core temp signals sleep Exercise, warm bath before bed

Environment

Steady room temperature Keep room dark

Ingestion

Decrease nicotine
Decrease Caffeine
Alcohol interferes with sleep
Light snack is recommended

Mental Control

Effort will not produce sleep Avoid mental stimulation Seek mental quiescence

ERASE

Environment

Using the Environment to alter pain perceptions and provide a foundation of wellness

Social Challenges

Dr. -Patient

Family

Friends

Employer and co-workers

Physical Challenges

Web-based self-management

http://fibroguide.med.umich.edu/

Coming soon: PAIN Guide

Pharmacological Therapies for Central Pain States

Strong Evidence

- Dual reuptake inhibitors such as
 - Tricyclic compounds (amitriptyline, cyclobenzaprine)
 - SNRIs and NSRIs (milnacipran, duloxetine, venlafaxine?)
- Anticonvulsants (e.g., pregabalin, gabapentin)

Modest Evidence

- Tramadol
- Older less selective SSRIs
- Gamma hydroxybutyrate
- Low dose naltrexone
- Cannabinoids

Weak Evidence

Growth hormone, 5-hydroxytryptamine, tropisetron, S-adenosyl-L-methionine (SAMe)

No Evidence

 Opioids, corticosteroids, nonsteroidal anti-inflammatory drugs, benzodiazepine and nonbenzodiazepine hypnotics, guanifenesin

Non-Pharmacological Therapies for Chronic Pain States

Strong Evidence

- Education
- Aerobic exercise
- Cognitive behavior therapy

Modest Evidence

- Strength training
- Hypnotherapy, biofeedback, balneotherapy

Weak Evidence

 Acupuncture, chiropractic, manual and massage therapy, electrotherapy, ultrasound

No Evidence

Tender (trigger) point injections, flexibility exercise

FibroGuide and Pain Guide can serve as the foundation for CBT

FibroGuide

An Online Self-Management Program for Individuals with Fibromyalgia

Facilitator's Manual

David A Williams, Ph.D.

Professor, University of Michigan

Adapted from Living Well with Fibromyalgia

To be used with $\underline{FibroGuide.com}$ or $\underline{FibroGuide.med.umich.edu}$

Pain Guide

An Online Self-Management Program for Individuals with Chronic Pain

Facilitator's Manual

David A Williams, Ph.D.

Professor, University of Michigan

Bottom Line

- 1. Pain is not located in a body part. It is a perception and needs to be treated as a perception.
- 2. Taking time to just listen to the patient's story is a necessary part of pain treatment. You will be treating the affective and social components of pain.
- 3. If you recommend self-management (exercise, relaxation, sleep hygiene etc.), ask about it with the same enthusiasm and regularity that you ask about drugs. Patients learn what you think is <u>really</u> important by what you ask about.